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ABSTRACT

Housing price jump risk and the subprime crisis have drawn more atten-
tion to the precise estimation of mortgage insurance premiums. This study
derives the pricing formula for mortgage insurance premiums by assuming
that the housing price process follows the jump diffusion process, capturing
important characteristics of abnormal shock events. This assumption is con-
sistent with the empirical observation of the U.S. monthly national average
new home returns from 1986 to 2008. Furthermore, we investigate the impact
of price jump risk on mortgage insurance premiums from shock frequency of
the abnormal events, abnormal mean and volatility of jump size, and normal
volatility. Empirical results indicate that the abnormal volatility of jump size
has the most significant impact on mortgage insurance premiums.

INTRODUCTION

Mortgage insurance has an important role in the housing finance market since it
transfers the borrower’s default risk exposure from the lenders to insurers and facil-
itates the creation of secondary mortgage markets (see Canner and Passmore, 1994).
When determining mortgage termination, the present value of amortizing mortgage
payments and the ability of the borrower to release from the payments through either
prepayment or default must be considered. Although the prepayment decision is
significantly affected by the interest rate, the house price influences significantly the
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FIGURE 1
U.S. National Average New Home Price Returns for Single-Family Mortgage

Note: The dashed (solid) line represents the mean of the housing price return plus (minus) three
standard deviations.

decision to default.1 Some studies show that changes in the loan-to-value ratio and
housing price produce a wider range of mortgage default (see Kau et al., 1992; Kau,
Keenan, and Muller, 1993; Kau and Keenan, 1995, 1996, 1999). When the loan-to-value
ratio is higher, the price of mortgage insurance is higher. Furthermore, the house price
volatility parameter is important for mortgage insurance and the impact of increasing
the house price volatility is significant. Hence, the housing price change is a crucial
factor in determining mortgage insurance premiums.2

In the previous literature, housing price change is assumed to follow a traditional ge-
ometric Brownian motion, and this assumption is reasonable under relatively stable
housing prices. For example, all related studies on mortgage insurance pricing (see,
e.g., Kau et al., 1992, 1995; Kau, Keenan, and Muller, 1993; Kau and Keenan, 1995,
1999; Bardhan et al., 2006) assume that the housing price process follows a geometric
Brownian motion. However, Figure 1 shows the U.S. national average new home
price returns for single-family mortgage from January 1986 to June 2008. It can be
seen that there were 14 times when the monthly housing price changed more than 10
percent per month. In particular, the highest monthly housing price returns was 20.85
percent, in June 1992, while the lowest monthly housing price returns was −22.76 per-
cent, in November 2007. Since 2007, with the higher interest rates and higher mortgage
payments, subprime crisis occurred, which caused significantly downward jumps of

1 Some empirical studies also indicate that the patterns of default and prepayment are signif-
icantly explained by the economic risk factors, such as interest rate, housing price return,
loan-to-value ratio, and unemployment rate (Campbell and Dietrich, 1983; Schwartz and
Torous, 1989, 1993; Quigley and Van Order, 1990, 1995; Deng, Quigley, and Van Order, 2000;
Lambrecht, Perraudin, and Satchell, 2003; Caselli, Gatti, and Querci, 2008).

2 Some empirical studies also examine the effects of catastrophic events on property values
(see Bin, Kruse, and Landry, 2008).
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housing price. On the other hand, other abnormal shocks, such as “Black Wednes-
day” in September 1992 or the “Iraq disarmament crisis” in July 1993, caused the U.S.
Federal Reserve to adapt an expansionary monetary policy. Previous studies have
suggested a strong connection between real interest rates and housing prices. Har-
ris (1989), Abraham and Hendershott (1996), Englund and Ioannides (1997), Sutton
(2002), Borio and Mcguire (2004), and Kostas and Zhu (2004), among others, all report
the significantly negative relationship between the real interest rates and housing
prices. Since the U.S. Federal Reserve lowered the interest rate 23 times from 1990 to
1992, we can understand that the announcement of lower interest rates could cause
the U.S. housing price to make greater upward jumps. Overall, the housing price
seems to have made higher jumps and volatility spikes during these years.

In order to properly model the housing price process, most of the discrete time models
have been of the generalized autoregressive conditional heteroskedastic (GARCH)
type, while the continuous time models were based on diffusion models. Mizrach
(2008) and Schloemer et al. (2006) address the existence of jumps in housing markets.
Mizrach demonstrates the jump risk component from the returns on the Chicago
Mercantile Exchange (CME) futures. The empirical result indicates that, on average,
it requires about 69 jump risks to be significant in the 315-day sample. Although
GARCH models are capable of capturing smooth persistent changes in volatility,
GARCH models are not suited to explaining the large discrete changes due to the
abnormal events found in housing price returns. Hence, rather than studying volatil-
ity spikes, this article investigates the jump parameters of the housing price and
their impacts on the mortgage insurance premium, when abnormal event informa-
tion important to the housing market arrives, especially in the subprime mortgage
crisis. Corresponding to the abnormal event of subprime mortgage crisis, the jump
component of housing price represents systematic and nondiversifiable risk, which
is, therefore, correlated with the market. To value the mortgage insurance contract,
we use the Esscher transform technique developed by Gerber and Shiu (1994), which
is a well-established technique in actuarial science and is suitable in cases where the
log-returns of the underlying asset are governed by a process with independent and
stationary increments. The behavior of the change of housing price can be divided into
two parts: (1) continuous diffusion, which is responsible for the usual housing price
movement and is described by a traditional Brownian motion, and (2) discontinuous
jumps, which correspond to the arrival of new information important to the housing
market.

This article contributes to the literature on mortgage insurance contract pricing in
the following ways. First, this article estimates parameters of the jump diffusion
model (JDM) using expectation-maximum (EM) gradient algorithms (based on the
U.S. housing price data). EM gradient algorithms can be appropriate for latent-data
problems because the total number of jumps for housing price is unobserved. The
empirical results show that the likelihood ratio test (LRT) rejects the model without
jumps at the significance level of 99 percent when using the national average for new
home prices, but it does not reject the model without jumps when using the national
average for previously occupied home prices. Second, to be consistent with the jump
behavior of U.S. housing prices, this article applies a jump diffusion framework to
derive the closed-form formula of mortgage insurance contracts by using Esscher
transform technique. Our pricing formula for mortgage insurance contracts can also
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be reduced to the closed-form formula of Bardhan et al. (2006). Finally, to investigate
how the jump risk of housing price impacts the valuation of mortgage insurance
premiums, numerical analysis shows the relationships among mortgage insurance
premium, the shock frequency of the abnormal event, the abnormal volatility of jump
size, and the abnormal mean of jump size. If the shock frequency of the abnormal
event (the abnormal volatility of jump size) increases two standard deviations, while
all other parameters are fixed, the mortgage insurance premium should increase 0.27
percent (11.36 percent), respectively. Meanwhile, as the abnormal mean of jump size
decreases two standard deviations, the mortgage insurance premium increases 6.57
percent. Therefore, the abnormal variance of jump size has the most significant effect
on the mortgage insurance premium, and this implies the necessity of considering the
jump parameters when pricing mortgage insurance contracts whose collateral asset
is new homes.

The remainder of this article is organized as follows. The second section illustrates
the mortgage insurance contract and the model. The third section derives the pricing
formulas for mortgage insurance contracts under JDMs. Estimation via EM algorithms
is shown in the fourth section. Empirical and numerical analyses are presented in the
fifth section. The sixth section summarizes the article and gives conclusions. For
simplicity, most proofs are in the Appendix.

THE CONTRACT AND MODEL

For the related models used in previous work, Kau et al. (1992, 1995), Kau, Keenan, and
Muller (1993), Kau and Keenan (1995, 1999), and others consider two state variables:
the interest rate and the housing price process. Prepayments and defaults are also
typically determined endogenously within the model. However, implementation of
these models requires complex numerical procedures since no closed-form formulas
exist. Furthermore, some articles, such as Hendershott and Van Order (1987), also
find evidence that mortgage insurance premiums are not very sensitive to interest
rate volatility. Hence, Schwartz and Torous (1993), Dennis, Kuo, and Yang (1997), and
Bardhan et al. (2006), among others, model the unconditional probability of default
exogenously. Closest to our model is the option pricing method proposed by Bardhan
et al. (2006). We develop a closed-form option-pricing framework for pricing mortgage
insurance premiums and model the unconditional probability of default exogenously.
Bardhan et al. assume that the housing price follows a geometric Brownian motion
process. In contrast, to capture the jump phenomenon of housing price as shown in
the Figure 1, the dynamic process of housing price proposed in this article combines
a Brownian motion and a compound Poisson process. Therefore, in this section, the
structure of mortgage insurance contract is illustrated and then we use the JDM to
allow for abnormal shock events in housing prices.

Mortgage Insurance Contract
At time t = 0, i.e., at origination, the lender issues a T-month mortgage, secured by the
housing, for the amount of L(0) = LV H(0). Let L V be the initial loan-to-value ratio
and H(0) be the initial housing price. We assume that the mortgage loan has a fixed
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interest rate c and that installments x are paid monthly. Hence, with no prepayment
or default prior to time t, the unpaid loan balance L(t) at time 0 ≤ t ≤ T is given by
the following expression:

L(t) = x
c

(
1 − 1

(1 + c)T−t

)
. (1)

This equation shows that the unpaid loan balance is equal to the value of an ordinary
annuity with a monthly payment equal to x and the discount rate equal to the contract
rate c. In addition, at time t = 0, the insurer writes a mortgage insurance contract that
promises to compensate the lender only when the borrower defaults. We follow the
model of Bardhan et al. (2006) to consider that the realized loss for the insurer in
case of the borrower’s default can be represented as a portfolio of put options on the
borrower’s collateral. Thus, if a default occurs at time t, the insurer has to pay the
lender the following amount:

L OSS(t) = max [0, min(L(t−) − H(t), L RL(t−))] , (2)

where L R denotes the loss ratio. Equation (2) implies that if the housing price exceeds
the remaining loan balance, after the house is sold and the lender is compensated
from the proceeds, the lender bears no loss, and hence, the loss for the insurer is also
zero. On the other hand, if the housing price is not sufficient for a full repayment of
the loan balance, the maximum loss to the insurer is equal to L RL(t−).

The previous studies on mortgage insurance pricing all assume that the housing
price process follows a geometric Brownian motion. However, if the housing price
process has an explicit jump risk that corresponds to the arrival of new important
information to the housing market, the geometric Brownian motion will fail to capture
important characteristics. Hence, it is necessary to use an appropriate model that
considers jump risks to price the mortgage insurance contracts. In the following,
we use jump diffusion framework to describe the housing price process with jump
risks.

Model Structure of Housing Price With Jump Risks
We construct our model on a filtered probability space (�, F, P) generated by these
two processes; i.e., the process of housing price H(t), and the process of jump size
in housing price Y(t). There exists a unique physical probability P such that capital
markets are complete. The filtration F = (Ft)t≥0 satisfies Ft = F W

t ∨ F Y
t for any time t,

where F W
t = σ (W(u), 0 ≤ u ≤ t), and F Y

t = σ (Y(u), 0 ≤ u ≤ t). Hence, F W
t ∨ F Y

t con-
tains complete information on Brownian motions and jump sizes of the housing
price returns. Further, there are three types of agents in the economy: the lender, the
borrower, and the insurer.

Assume that the risk-free security is the money market account B(t) = er t , where r is
constant continuously compounded return, r ∈ R++. Furthermore, let the process of
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the housing price be the combination of a Brownian motion and a compound Poisson
process as follows:3

H(t) = H(0) exp

⎛
⎝μt + σHdWP (t) +

N(t)∑
n=0

Yn − λE(Y)t

⎞
⎠ , (3)

where H(0) is the initial housing price, μ is the expected growth rate of housing price,
and σH is the constant volatility of the Brownian component of the housing price
process. In addition, W(t) is a standard Brownian motion. The role of WP (t) with drift
can be used to capture the unanticipated instantaneous change of housing price, which
is the reflection of normal events, but it may not work so well for abnormal shocks.
For example, the government may suddenly increase interest rates, or a mortgage
crisis may arise. Thus, a compound Poisson process is constructed here to address
the total number of jumps and jump size corresponding to the arrival of abnormal
information. N(t) represents the total number of jumps (including the house price rise
and drop event) during a time interval of (0, t], and it is based on a Poisson process
with a intensity parameter λ . Notation Yn, n = 1, 2, . . . are i.i.d. random variables
representing the size of the nth size of the jumps with the density function f (dy)
and the expectation E(Y) < ∞. In particular, we assume that the jump size is normal
distributed with mean ϕ and variance δ2, that is, Y ∼ N(ϕ, δ2). ϕ > 0(ϕ < 0) represents
the upward average jump size (downward average jump size) in housing price in case
of abnormal events during a time interval of (0, t]. In addition, all three sources of
randomness, WP (t) standard Brownian motion, N(t) Poisson process, and Y the jump
size, are assumed to be independent.

Changes in the housing price have three components: (1) the expected instantaneous
housing price change conditional on no abnormal events; (2) the unanticipated instan-
taneous housing price change, which is the reflection of causes that have a marginal
impact on the gauge; and (3) the instantaneous change due to an abnormal shock
event. The housing price H(t) follows a geometric Brownian motion during time
period (0, t] given that no information of abnormal event arrivals during the time
period. When information on an abnormal event arrives at time t, the housing price
changes instantaneously from H(t−) to exp(Yn) H(t−).

Note that accurately predicting the unconditional probability of borrower default is
not our purpose, and so we assume that the unconditional probability of borrower
default at time t ∈ T is exogenously determined and is set equal to P(t).

MORTGAGE INSURANCE VALUATION

For the pricing methods for mortgage insurance contracts in the context of the liter-
ature, Kau et al. (1992, 1995), Kau, Keenan, and Muller (1993), and Kau and Keenan
(1995, 1999) use arbitrage principles of option pricing theory to rationally price a
mortgage. The value of the mortgage can be described as the solution to a partial
differential equation in backward time, whose terminal and boundary conditions
embody the terms of the contract. Dennis, Kuo, and Yang (1997) propose the actuarial

3 This process is a special case of the Levy process (see Ballotta, 2005).



HOUSING PRICE JUMP RISKS 405

pricing method, in which a feasible premium structure is defined as one such that the
present value of the expected loss (plus a gross margin) for the insurer is equal to that
of the expected premium revenues. Bardhan et al. (2006) assume that the agents in the
economy are risk neutral. In this case, the present value of the severity of loss would
involve the expectation with respect to the risk neutral probability measure. Hence,
they develop an option-pricing framework to price mortgage insurance contracts
under the risk-neutral probability measure.

To compute a mortgage insurance contract, we also assume that financial markets
are frictionless. There are no transaction costs or differential taxes, trading takes place
continuously in time, borrowing and short selling are allowed without restriction and
with full proceeds available, and borrowing and lending rates are equal. Furthermore,
when the housing price process has jumps, the market becomes incomplete, and then
there is no unique pricing measure. Because most shock events causing the housing
price to jump, such as the subprime mortgage crisis, are systematic risks, the jump
component of housing price represents both systematic and nondiversifiable risk. We
make use of the Esscher transform measure developed by Gerber and Shiu (1994) to
define the Radon-Nikodym process η(t) as follows:

η(t) = exp

⎛
⎝−σ 2

H
2

h2t + hσH WP (t) + h
N(t)∑
n=0

Yn − t
∫

R
(ehy − 1) f (dy)

⎞
⎠ , (4)

where η(t) is called the Esscher transform of parameter h. Hence, it is possible to select
the risk-neutral Esscher measure as the measure Ph so that housing prices discounted
at the risk-free rate are Ph-martingales. Under the risk neutral probability measure
Ph , the dynamic process of housing price becomes:

H(t) = H(0) exp

⎧⎨
⎩
(

r − σ 2
H
2

−
∫

R
ehy(e y − 1) f (dy)

)
t + σH Wh(t) +

N(t)∑
n=0

Yn

⎫⎬
⎭ . (5)

Under Equations (2) and (5), the present value of the severity of loss, DL(t), can be
given by the following expression:

DL(t) = e−rt E Q [L OSS(t)]

= e−rt E Q [max(K1 − H(t), 0)] − e−rt E Q [max(K2 − H(t), 0)] ,
(6)

where K1 = L(t−), K2 = (1 − L R)L(t−).

When a borrower’s default occurs at time t ∈ T , Equation (6) implies that the present
value of the severity of loss, DL(t), can be duplicated by a long position in a European
put option with a strike price K1 and a short position in a European put option with
a strike price K2, both with the time to maturity equal to the time to default t.
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Based on the Esscher measure, the expectation in (6) can be represented, for all t ∈ T ,
as follows:4

DL(t) =
∞∑

m=0

exp(−λμh+1t) (λμh+1t)m

m!
[P(K1) − P(K2)] , (7)

where P(Ki ) = Ki exp(−rm;ht)�(−d2m(Ki )) − H(0)�(−d1m(Ki )), i = 1, 2,

d1m,2m(Ki )=
ln(H(0)/Ki )+

(
rm;h ± σ 2

m
2

)
t

√
σ 2

mt
, rm;h =r −λ(μh+1 − μh) + m

t
ln

(
μh+1

μh

)
,

σ 2
m = σ 2

H + mδ2

t

μh = exp
(

hϕ + 1
2

h2δ2
)

, μh+1 = exp
(

(h + 1)ϕ + 1
2

(1 + h)2δ2
)

.

Hence, volatility of the housing price process σ 2
m t includes two components: normal

volatility of the Brownian component σ 2
H t during time t and abnormal volatility of

jump size mδ2 when an abnormal event occurs m times. If λ = 0, this means that no
abnormal shock event occurs, and so the volatility of housing price process captures
only the normal volatility, and so Equation (7) can be reduced to the standard closed-
form formula of Bardhan et al. (2006).

Since the housing price is independent of the unconditional probability of borrower
default, the fair price (FP) of a mortgage insurance contract with jump risk is given
as follows:

FP =
T∑

t=1

P(t)DL(t). (8)

Finally, across the mortgage life, the insurers are expected to earn a profit even though
they may lose money in some periods. Thus we assume that the gross profit margin
that the insurer requires is equal to q , and the mortgage insurance premium (FPA)
with jump risk is given by the expression:

FPA = (1 + q )FP. (9)

Equation (8) implies that the fair price (FP) is calculated by the summation of a
series of the loss amount of the insurer if the borrower defaults in each month from
inception to expiration. Hence, the insurer can judge in each month the probability
that the borrower will default rather than at only maturity.

4 The detailed proof of a European put option using the Esscher transform technique can be
found in previous articles (e.g., Ballotta, 2005).
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ESTIMATION VIA EM ALGORITHM

Using Equation (3), one can obtain the housing price H(t + 	t) given as H(t) resulting
in

H(t + 	t) | Ft = H(t) exp

⎡
⎣μ	t + σH	W(t) +

N(t+	t)∑
n>N(t)

Yn − λϕ	t

⎤
⎦ . (10)

We choose monthly time interval because monthly data are the highest frequency data
for the housing prices. In each monthly time interval of length 	t = 1, we substitute
(μ − λϕ)	t, σH	t, N(	t) for μ − λϕ, σH , N; hence, the rate of change for housing
price R	t = ln(H(t + 	t)/H(t))5 can be written as:

R	t = (μ − λϕ)	t + σH	Wt +
N(	t)∑
n=1

Yn

= μ − λϕ + σH Z +
N∑

n=1

Yn, (11)

where Z ∼ N(0, 1).

To estimate parameters for the jump diffusion process, an estimation technique that
can handle the latent component is needed because the total number of jumps for
housing price are latent data. There is a wealth of estimation techniques available
for models including a latent component, such as EM algorithm in Dempster, Laird,
and Rubin (1977), Markov Chain Monte Carlo (MCMC) method in Eraker, Johannes,
and Polson (2003), and the efficient method of moments (EMM) in Chernov et al.
(2003).6 EMM is fast and efficient but is not satisfactorily consistent and asymptotically
normal. The EM-type algorithms, deterministic in nature, are designed to obtain the
modes of posterior distributions in the maximum likelihood estimates (MLE) (see
Tanner, 1996). Some studies, such as Nityasuddhi and Bohning (2003), Zeng and
Cai (2005), and Kvarnstrom (2005), indicate that the MLE via the EM algorithm is
strongly consistent and asymptotically normal. MCMC algorithms are stochastic and
they iterate between simulating from the conditional distributions of latent data and
the parameters, typically a more ambitious task and higher computation cost than
the point estimation needed for the EM algorithm. In our model, the expressions
for expectation in the first and the second partials of the MLE can be derived the
closed-form formulae. Consequently, to reduce computation cost, this article uses EM
gradient algorithms to estimate parameters for the jump diffusion process.

The EM algorithm is one of the pillars of modern computational statistics. To ex-
plain this algorithm, let us recall the conventions underlying the EM algorithm. Let

5 The unit root test is used to confirm that the time series of the change rate of the housing price
is stationary.

6 Other estimation methods include simulated maximum likelihood as in Durham and Gallant
(2002) and state-based generalized method of moments (GMM) as in Pan (2002).
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R̃ = [R1, R2, . . . , RT ] be the observed data and Ñ = [N1, N2, . . . , NT ] be the latent
data, and then the complete data are X̃ = [R̃, Ñ] = [R1, R2, . . . , RT , N1, N2, . . . , NT ].
Although the statistician has control over how the complete data are defined, the
sensible procedure is to choose X̃ so that it is trivial to estimate the parameters
θ = (μ, σ 2

H , ϕ, δ2, λ) of a model by maximum likelihood. To estimate the vector of
unknown parameters θ = (μ, σ 2

H , ϕ, δ2, λ) of the JDM, the EM algorithm starts from
the initial guess value θ0 = (μ0, σ 2

H0, ϕ0, δ2
0, λ0) and then iteratively in two steps: the

E-step and the M-step.

E-Step
In the E-step of the EM algorithm, calculate the conditional expectation of the
complete-data likelihood function Q(θ | θn) given the data R̃ and current estimated
value θn = (μn, σ 2

Hn, ϕn, δ2
n, λn) as follows:

Q(θ | θn) = E(log LC (θ | R̃, Ñ) | R̃, θn) =
T∑

t=1

E(log LC (θ | Rt , Nt) | Rt , θn)

=
T∑

t=1

∞∑
mt=0

[
−λ + mt log λ − log(mt!) − 1

2
log

(
2π

(
σ 2

H + mtδ
2))

− (Rt − μ − λϕ − mtϕ)2

2
(
σ 2

H + mtδ2
)

]
P(Nt = mt | Rt , θn). (12)

M-Step
In the M-step of the EM algorithm, compute the MLE of the parameters θ1 =
(μ̂, σ̂ 2

H , ϕ̂, δ̂2, λ̂ ) by maximizing Q(θ | θn) found on the E-step:

θn+1 = arg max
θ

Q(θ | θn ). (13)

The essence of the EM algorithm is that increasing Q(θ | θn) forces an increase in the
log-likelihood of the observed data. Note that it is impossible to carry out the M-
step exactly due to nonlinear equations. The fastest common algorithm for iteratively
solving the M-step would be Newton’s method, which has quadratic convergence,
compared with the linear convergence in the EM algorithm. Hence, we use the EM
gradient algorithm proposed by Lange (1995), in which a single iteration of Newton’s
method at each M-step would be adequate to ensure convergence of an approximate
EM algorithm. Based on the EM gradient algorithm, the updating rule of the current
parameter column vector θn is:

θn+1 = θn − (
d20 Q(θn | θn )

)−1d10 Q(θn | θn ). (14)
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The operators d10and d20 take first and second partials with respect to the θ variables
of Q(θn | θn). The Hessian matrix d20 Q(θn | θn) is indeed always negative and definite.
This fact in turn implies strict concavity of Q(θ | θn) and uniqueness of the maximum
point θn+1. Therefore, in the M-step of nth iteration, one can derive the new parameter
estimate θn+1 by the Equation (14), and then θn+1 is used to begin E-step of (n + 1)th
iteration. This two-step process is repeated until convergence within 1,000 iterations.
The detailed proof of the log-likelihood function of JDM via EM gradient algorithm
is shown in the Appendix.

Since the LRT has characteristics of invariance and consistency, we use the likelihood
ratio statistic as follows:

� = 2
(

ln L(R; θ1) − ln L(R; θ∗)
)
, (15)

where θ1 is the MLE under the Poisson jump diffusion specification. θ∗ is the pa-
rameter vector estimate corresponding to the local maximum when λ = 0 and hence
when no jump structure is present. The null hypothesis is that the rate of change
for housing prices is consistent with a lognormal diffusion process without a jump
structure (the Black–Scholes model). On the other hand, the alternative hypothesis is
that change rate of housing price stands for the JDM. Under the null hypothesis, � is
asymptotically χ2-distributed with two degrees of freedom.

EMPIRICAL AND NUMERICAL RESULTS

Our data come from the Federal Housing Financial Board, which contains the terms
of conventional single-family mortgage and national average homes prices in the
United States. The categories of homes include previously occupied homes, new
homes, and all homes, and the mortgage rates include both fixed and adjustable
rates. We investigate and compare on a monthly basis previously occupied home
price and new home prices with adjustable-rate mortgages. The contact interest rate,
effective interest rate, term to maturity, mortgage loan amount, and loan-to-price ratio
of previously occupied homes and of new homes are also collected for analysis. Our
sample period is from January 1986 to June 2008, so that there are 270 observations
for each variable.

Parameter Estimation and Jump Test
In Table 1, Panel A reports the parameters estimated from the JDM and Black–Scholes
model (BSM) based on single-family mortgage national average new homes prices.
By using EM gradient algorithms, the expected rate of change of the housing price,
μ, is 1.2 × 10−3, which implies that the change of the housing price increases by
1.2 × 10−3 per month on average. The positive sign of μ is consistent with the fact
that U.S. housing prices rise over time. The abnormal mean, abnormal volatility,
and shock frequency of the abnormal event are 2 × 10−2, 7.9 × 10−3, and 1.47 × 10−1,
respectively. The LRT statistics � = 75.29 reject the model without jumps at the signif-
icance level of 1 percent. Particularly, Figure 2 shows much higher jump probability of
new homes prices (approach one) during 1992–1993 (the announcement of lowered
interest rate) and 2007–2008 (mortgage subprime crisis). This result seems reason-
able, implying that the average new home prices are sensitive to abnormal shock
information or catastrophic events, such as the announcement of interest rate policy.
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TABLE 1
Estimating and Testing the Model Based on U.S. National Average Home Price Returns
for Single-Family Mortgage

Model μ σ 2
H ϕ δ2 λ LRT

Panel A: National Average New Homes Price Returns

JDM 1.2 × 10−3 8 × 10−4 2 × 10−2 7.9 × 10−3 1.47 × 10−1 � = 75.29∗

(2.1 × 10−3) (1 × 10−4) (1.6 × 10−2) (2.1 × 10−3) (5.4 × 10−2)∗

BSM 2.8 × 10−3 2 × 10−3 – – –

Panel B: National Average Previously Occupied Homes Price Returns

JDM 2.1 × 10−3 4.4 × 10−4 −1.96 × 10−2 4 × 10−5 3.62 × 10−3 � = 0.037
(1.2 × 10−3) (4 × 10−5) (7.7 × 10−3) (1.1 × 10−4) (3.3 × 10−2)

BSM 2.2 × 10−3 4.9 × 10−4 – – –

∗Denotes statistical significance at the 1 percent level, and the values in parentheses represent
the standard deviation. JDM and BSM indicate jump diffusion model and Black–Scholes
model, respectively.

FIGURE 2
The Jump Probability of U.S. National Average New Home Price Returns for Single-
Family Mortgage
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Hence, the housing price has higher jump risk as abnormal shock information
occurs.

Panel B reports the parameters estimated for the previously occupied home prices.
The LRT statistics, in which � = 0.037, do not reject the model without jumps at
the significance level of 5 percent. If we examine the historical price movement of
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FIGURE 3
U.S. National Average Previously Occupied Home Price Returns for Single-Family
Mortgage

Note: The dashed (solid) line represents the mean of the housing price return plus (minus) three
standard deviations.

FIGURE 4
The Jump Probability of U.S. National Average Previously Occupied Home Price Returns
for Single-Family Mortgage
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previously occupied homes in Figures 3 and 4, we can find only two times when
the monthly housing price returns exceed three standard deviations, and thus the
jump probability of the previously occupied homes is fairly small. In general, the
previously occupied home prices appear to have little variation and so they may
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be less sensitive to changes in the economic situation, such as announcement of
significant government policy. This could result from different degree of informa-
tional efficiency in these two markets. Typically, the new housing market tends to
be more sensitive than existing market in terms of both quantities and price. This
is because builders usually hold more information than individuals and can quickly
respond to market conditions so that they can manipulate the supply quantities and
prices in response to the changes in demand. Given that builders of new housing
possess more information than individuals, these builders may use such informa-
tion to their advantage, and in the process generate some short-term volatility in the
market.

Note that there are other formal tests available for detection of jumps.7 We use
the adjusted ratio jump test statistics provided by Barndor-Nielsen and Shephard
(2006), and compute the significant jump according to Andersen, Diebold, and
Bollerslev (2007), finding that there are about 30 significant jump risks in the 269
monthly samples at a significance level of 5 percent based on the data of new home
price.8

Numerical Analysis for Mortgage Insurance Premium
Base Parameters and Value of Mortgage Insurance Premiums. Results in this section are
based on a set of parameters from the data and estimation of the national average new
homes price returns for single-family mortgage, which was proved to have jump risk
in the previous section. The base parameters and their standard errors of the normal
volatility of the Brownian component (σ 2

H), the abnormal volatility of jump size (δ2),
the abnormal mean of jump size (ϕ), and shock frequency of the abnormal events (λ)
on the mortgage insurance premium are taken from Table 1. The other base param-
eters are obtained by using the average value of observations from sample period.
Table 2 presents these base parameter values on the mortgage insurance premium and
the base value of the mortgage insurance premium is therefore calculated as $2,289.6
by using Equations (6)–(8).

Do Jump Parameters Values Matter: Sensitivity Analysis. Table 3 further reports the
sensitivity analysis of the mortgage insurance contract. The indicated parameters
plus (minus) two standard deviations are used to demonstrate the abnormal volatil-
ity effect, the normal volatility effect, abnormal mean of jump size effect, and shock
frequency effect, respectively. Hence, the parameters of the abnormal volatility of
jump size are set to (3.7 × 10−3, 7.9 × 10−3), and 1.2 × 10−2. From the sensitivity

7 The formal statistical tests of jumps are provided by Barndor-Nielsen and Shephard (2006),
Huang and Tauchen (2005), Eraker, Johannes, and Polson (2003), Andersen, Diebold, and
Bollerslev (2007), etc.

8 We also take the sample interval to be weekly changes, and follow Mizrach (2008) to compute
50-period rolling sample to analyze the statistical significance of the jump risk. The results
represent about 70 jump risks is significant in the 1,075 weekly samples.
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TABLE 2
Base Parameter Values of Mortgage Insurance Premium

H = $235, 000 Housing price
L R = 0.78 Loss ratio
r = 0.5% Riskless interest ratea

x = $300 Installments
T = 360 (30 year) Term to maturity of mortgage contract
c = 0.6% Contract interest rate of mortgages
q = 0.05 Gross profit margin
P(t) = 0.03 Unconditional default probability

aThe risk-neutral Esscher transform parameter h is determined by Esscher martingale condition
(see Gerber and Shiu, 1994).

analysis, if the abnormal volatility of jump size increases, this causes the volatility
of mortgage insurance premium to increase, and the Poisson probability to increase
and the volatility of option (value of the severity of loss) to increase; then the value
of mortgage insurance premium increases. Thus, with higher the abnormal volatility
of jump size, the value of a mortgage insurance contract increases. This economic
implication is that if there is a future crash in the housing market, housing prices
will have an intense jump phenomenon and higher abnormal volatility of jump size.
Based on this situation, as the abnormal volatility of jump size increases two standard
deviations (from 7.9 × 10−3 to 1.2 × 10−2), while all other parameters are fixed, the
mortgage insurance premium should be $2,550.0 rather than $2,289.6. Thus, the mort-
gage insurance premium increases by 11.36 percent, implying that the insurer should
collect higher premiums under the possibility if an event such as subprime mortgage
crisis. On the other hand, if the abnormal volatility of jump size reduces two stan-
dard deviations (from 7.9 × 10−3 to 3.7 × 10−3), while all other parameters are fixed,
the mortgage insurance premium decreases to $2,009.9 from $2,289.6, a reduction of
12.23 percent.

Furthermore, the parameters of shock frequency of the abnormal event and the mean
of jump size are respectively set to (9.3 × 10−2, 1.47 × 10−1, and 2.01 × 10−1) and
(−1.2 × 10−2, 2 × 10−2, and 5.2 × 10−2). We find that the mortgage insurance pre-
mium is positively related to shock frequency of the abnormal events but negatively
related to the mean of jump size. If a housing price crisis occurs and continues to
deepen, increasing the possibility for a future housing recession, the frequencies
abnormal events in the housing market could be predicted to rise. The mortgage
insurance premium increases by 0.27 percent when the shock frequency of the ab-
normal events is predicted to increase two standard deviations. Furthermore, as
the mean of jump size drops to −1.2 × 10−2 from 2 × 10−2, the mortgage insur-
ance premium increases by 6.57 percent. Similarly, the mortgage insurance premium
decreases by 0.18 percent when the frequency of abnormal events of housing market
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TABLE 3
Sensitivity Analysis of a Mortgage Insurance Contract

λ

9.3×10−2 1.47×10−1 2.01×10−1

−1.2×10−2 3.7×10−3 6×10−4 2,085.4 (−8.93%) 2,089.8 (−8.74%) 2,095.5 (−8.49%)
8×10−4 2,185.5 (−4.56%) 2,189.8 (−4.37%) 2,195.6 (−4.12%)
1×10−3 2,290.7 (0.03%) 2,295.1 (0.23%) 2,300.8 (0.48%)

7.9×10−3 6×10−4 2,335.4 (1.99%) 2,339.8 (2.18%) 2,345.5 (2.43%)
8×10−4 2,435.6 (6.36%) 2,440.3 (6.57%) 2,446.0 (6.82%)
1×10−3 2,545.8 (11.18%) 2,550.5 (11.38%) 2,556.3 (11.63%)

1.2×10−2 6×10−4 2,585.5 (12.91%) 2,590 (13.11%) 2,595.6 (13.35%)
8×10−4 2,695.6 (17.72%) 2,700.2 (17.92%) 2,705.9 (18.17%)
1×10−3 2,810.7 (22.74%) 2,815.4 (22.95%) 2,821.2 (23.20%)

2×10−2 3.7×10−3 6×10−4 1,935.4 (−15.48%) 1,939.8 (−15.29%) 1,945.5 (−15.04%)
8×10−4 2,005.5 (−12.42%) 2,009.9 (−12.23%) 2,015.6 (−11.98%)
1×10−3 2,135.7 (−6.73%) 2,140.0 (−6.55%) 2,145.7 (−6.30%)

7.9×10−3 6×10−4 2,185.4 (−4.56%) 2,189.8 (−4.37%) 2,195.5 (−4.12%)
8×10−4 2,285.3 (−0.18%) 2,289.6(BV) 2,295.3 (0.27%)
1×10−3 2,395.8 (4.62%) 2,399.9 (4.80%) 2,406.2 (5.08%)

1.2×10−2 6×10−4 2,445.4 (6.79%) 2,449.8 (6.98%) 2,455.5 (7.23%)
8×10−4 2,545.7 (11.17%) 2,550.0 (11.36%) 2,555.6 (11.60%)
1×10−3 2,646.1 (15.56%) 2,650.2 (15.73%) 2,655.8 (15.98%)

5.2×10−2 3.7×10−3 6×10−4 1,828.3 (−20.16%) 1,832.6 (−19.97%) 1,838.3 (−19.72%)
8×10−4 1,928.7 (−15.77%) 1,932.8 (−15.59%) 1,938.4 (15.35%)
1×10−3 2,118.8 (−7.47%) 2,122.8 (−7.30%) 2,128.6 (−7.04%)

7.9×10−3 6×10−4 2,028.5 (−11.42%) 2,032.7 (−11.23%) 2,038.6 (−10.97%)
8×10−4 2,143.6 (−6.39%) 2,147.8 (−6.21%) 2,153.7 (−5.95%)
1×10−3 2,342.8 (2.31%) 2,346.9 (2.49%) 2,352.9 (2.75%)

1.2×10−2 6×10−4 2,278.5 (−0.50%) 2,283.1 (−0.30%) 2,288.7 (−0.05%)
8×10−4 2,473.6 (8.02%) 2,478.3 (8.23%) 2,483.9 (8.47%)
1×10−3 2,672.8 (16.72%) 2,677.7 (16.94%) 2,683.0 (17.17%)

Note: BV denotes the base value of the mortgage insurance premium and the values in paren-
theses denote the changing rate of the mortgage insurance premium when the parameters are
plus (minus) two standard deviations.

is projected to decrease by two standard deviations. Similarly, this table also shows
that the value of mortgage insurance contracts is positively correlated with the nor-
mal volatility of the Brownian component. Consequently, in Table 3, the abnormal
volatility of jump sizes, δ2, has the largest effect of all parameters on the mortgage
insurance premium. This implies that when a new home owned by the borrower is
mortgaged to the lender and the insurer writes a mortgage insurance contract that
promises to compensate the lender only when the borrower defaults, the insurer
must consider the impact of the jump parameters on pricing the mortgage insurance
contracts.
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For an extreme example, according to the data on annual housing price in Wyoming
from 1978 to 2003 from the Federal Housing Financial Board, there were 12 times
when the annual housing price increased over two standard deviations in a year.
If we define the annual housing price increasing over three standard deviations in
a year as an abnormal event, the shock frequency of the abnormal events is ob-
tained to be 0.5 (12/24). Furthermore, the lowest annual housing price return in-
creasing over two standard deviations is 11.3 percent in 1994, while the highest
annual housing price return increasing over two standard deviations is 140 percent
in 1984. Hence, the abnormal volatility of jump size and the normal volatility of
the Brownian component are computed as 0.334 and 0.004, respectively. Therefore,
based on the data for Wyoming’s annual housing price, the mortgage insurance
premium is calculated as $3,623.8. Comparing to the base valuation with national
average new homes prices, the mortgage insurance premium should be increased by
14.18 percent.

CONCLUSION

In the past decades, the U.S. housing prices have been relatively stable, so for the
valuation of mortgage insurance contracts, the housing price process is assumed
to follow traditional geometric Brownian motion. The use of Brownian motion is
a reflection of normal events, but it may not work so well for abnormal shock
events. Recently, U.S. housing prices have shown significant variation after the an-
nouncement of government policy changes or catastrophic events. Thus, it is neces-
sary to develop a suitable framework for housing price process that includes jump
risk.

This article first estimates parameters of the JDM by using EM gradient algorithms
based on national average new home prices and previously occupied home prices
for single-family mortgage from January 1986 to June 2008. The empirical results
indicate that national average new home prices for single-family mortgage have
jump phenomenon, whereas national average previously occupied home prices for
single-family mortgage do not. To capture the jump behavior of the U.S. housing
price, this article uses the jump diffusion process to derive the closed-form for-
mula of mortgage insurance contracts. The numerical results report the mortgage
insurance premium when indicated parameters increase (decrease) two standard
deviations to demonstrate the abnormal volatility effect, the abnormal mean effect,
the normal volatility effect, and shock frequency effect. The numerical results show
that the mortgage insurance premium is an increasing function of the abnormal
variance of jump size, the shock frequency of the abnormal event, and the nor-
mal volatility of the Brownian component, whereas it is a decreasing function of
the mean of jump size. Compared with the base valuation, if a housing crash oc-
curs in the future, and if this crash then causes the abnormal volatility of jump
size to increase two standard deviations, while all other parameters are fixed, the
mortgage insurance premium should be increased 11.36 percent. Conversely, if the
abnormal volatility of jump size is projected to decrease two standard deviations, the
mortgage insurance premium should be reduced 12.23 percent. Further, if the sub-
prime mortgage crisis occurs and continues to deepen, increasing the possibility of a
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future U.S. housing recession, the frequency of abnormal events in the housing mar-
ket is predicted to rise. When the shock frequency of the abnormal event is predicted
to increase two standard deviations, the mortgage insurance premium increases 0.27
percent. Similarly, the mortgage insurance premium increases 6.57 percent when the
mean of the jump size decreases two standard deviations. Therefore, the abnormal
variance of jump size has the most significant effect on the mortgage insurance pre-
mium, and this implies that the insurer must consider carefully the impact of the jump
parameters on pricing the mortgage insurance contracts when the collateral asset is
new homes.

In addition to jump diffusion process, the positive serial correlation of U.S. housing
price movements is also an especially relevant significant from the specification based
on the geometric Brownian motion (see Case and Shiller, 1989). This implies that the
recent declines in U.S. housing prices are likely to be followed by additional declines
or at least below average price gains, in the near future. Thus, the implications of
this for the pricing of mortgage insurance would be an interesting issue and the
pricing framework of some studies (see Sutton, 1995; Kuo, 1996) could provide a
useful starting point when addressing this issue. Next, other potential improvements
and possible extensions are given. First, the correlation between housing prices and
default risk of borrowers could be considered. Finally, due to the jump part, the
market is incomplete and the conventional riskless hedging is difficult to obtain, so
the issue of hedging with jump risk is an important topic.

APPENDIX: LOG-LIKELIHOOD FUNCTION OF JDM VIA EM GRADIENT ALGORITHM

The complete data are postulated to have complete-data likelihood function
LC (θ | R, N.) with respect to some fixed measure.

LC (θ | R̃, Ñ) = P(R̃, Ñ | θ ) = P(R1, R2, . . . , RT , N1, N2, . . . , NT | θ )

= P(R1, R2, . . . , RT | N1, N2, . . . , NT , θ )P(N1, N2, . . . , NT | θ ). (A1)

Since R̃ = {R1, R2, . . . , RT } and Ñ = {N1, N2, . . . , NT } are mutually independent, we
have

LC (θ | R̃, Ñ) =
T∏

t=1

P(Rt | Nt = mt , θ )P(Nt = mt | θ )

=
T∏

t=1

1√
2π

(
σ 2

H + mtδ2
) exp

{
−

[
(Rt − μ − λϕ − mtϕ)2

2
(
σ 2

H + mtδ2
)

]}
exp(−λ)λmt

mt!
.

(A2)



HOUSING PRICE JUMP RISKS 417

After taking the log of complete-data likelihood function, we have

log LC (θ | R̃, Ñ) =
T∑

t=1

[
− λ + mt log λ − log(mt!)

− 1
2

log
(
2π

(
σ 2

H + mtδ
2)) − (Rt − μ − λϕ − mtϕ)2

2
(
σ 2

H + mtδ2
)

]
.

(A3)

Hence, in the E-step of the EM algorithm, the conditional expectation of the complete-
data likelihood function

Q(θ | θn) = E(log LC (θ | R̃, Ñ) | R̃, θn) =
T∑

t=1

E(log LC (θ | Rt , Nt ) | Rt , θn )

=
T∑

t=1

∞∑
mt=0

[
−λ + mt log λ − log(mt!) − 1

2
log

(
2π

(
σ 2

H + mtδ
2))

− (Rt − μ − λϕ − mtϕ)2

2
(
σ 2

H + mtδ2
)

]
P(Nt = mt | Rt , θn ) (A4)

is computed, where θn = (μn, σ 2
Hn, ϕn, δ2

n, λn) is the current estimated value of θ .

Furthermore, P(Nt = mt | Rt , θn) can be computed as:

P(Nt = mt | Rt , θn ) = LC (θn | Rt , Nt = mt )
∞∑

mt=0

LC (θn | Rt , Nt = mt )

. (A5)

Next, a vector θ̃ = (μ̃, σ̃ 2
H , ϕ̃, δ̃2, λ̃ ) that maximizes Q(θ | θn) with respect to θ is found.

This is called the M-step. Replacing θn by θ̃ and repeating the E- and M-steps produces
a sequence of values of θn that converges to an MLE θ̃ .

Under the EM gradient algorithm, the current parameter column vector θn is updated
by

θn+1 = θn − (
d20 Q(θn | θn )

)−1d10 Q(θn | θn ), (A6)
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where

d10 Q(θ | θn ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ Q(θ | θn )
∂μ

∂ Q(θ | θn )

∂σ 2
H

∂ Q(θ | θn )
∂ϕ

∂ Q(θ | θn )
∂δ2

∂ Q(θ | θn )
∂λ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∞∑
mt=0

T∑
t=1

[
(Rt − μ − λ ϕ − mtϕ)(

σ 2
H + mtδ2

)
]

P(Nt = mt | R̃, θn)

∞∑
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T∑
t=1

[
−1

2
1(

σ 2
H + mtδ2

) + (Rt − μ − λ ϕ − mtϕ)2

2
(
σ 2

H + mtδ2
)2

]
P(Nt = mt | R̃, θn)

∞∑
mt=0

T∑
t=1

[
(Rt − μ − λϕ − mtϕ)(λ + mt)(

σ 2
H + mtδ2

)
]

P(Nt = mt | R̃, θn)
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T∑
t=1

[
−1

2
mt(

σ 2
H + mtδ2

) + (Rt − μ − λϕ − mtϕ)2mt

2
(
σ 2

H + mtδ2
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]
P(Nt = mt | R̃, θn)
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mt=0

T∑
t=1

[
−1 + mt

λ

]
P(Nt = mt | R̃, θn)

⎤
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H
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H

∂2 Q(θ | θn )

∂σ 2
H∂ϕ
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∂σ 2
H∂λ

∂2 Q(θ | θn )
∂ϕ2
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where

∂2 Q(θ | θn )
∂μ2 =

∞∑
mt=0

T∑
t=1

[
−1(

σ 2
H + mtδ2

)
]

P(Nt = mt | R̃, θn),

∂2 Q(θ | θn )
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H

=
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[
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]
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σ 2
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]
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σ 2

H + mtδ2
)
]
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∂2 Q(θ | θn )
∂ϕ∂δ2 =

∞∑
mt=0

T∑
t=1

[
−(λ + mt) mt(Rt − μ − λ ϕ − mt ϕ)(
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]
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P(Nt = mt | R̃, θn).
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