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Corporate competence sets can be expanded through capital investment and be dynami-
cally changed overtime, which can explain the phenomenon of “taking loss at the ordering
time and making profit at the time of delivery”. Such phenomenon has existed in prac-
tice for a long time, but there are no mathematical model that can explain it adequately.
This paper utilizes multiple criteria and multiple constraint levels linear programming
(MC2LP) model and its extended techniques to explore the linear programming models
with changeable parameters. The parameters include: unit profit, available resources,
and input-output coefficients of production function. With those parameters changed
with capital investment and/or time, we study how to find dynamic best solutions to
make “taking loss at the ordering time and making profit at the time of delivery” fea-
sible. For more general cases we also sketch a generalized mathematical programming
model with changeable parameters and control variables.

Keywords: Competence set; time dynamics; multiple criteria decision making; multiple
criteria and multiple constraint levels linear programming.

1. Introduction

Why many innovative companies, especially in high-tech industries, are willing
to take orders which offer deficits (red figures) at the ordering time? Because
in their mind, perhaps, based on their calculation or intuition, they could even-
tually make profit (black figures) at the delivery time. The time interval from
ordering time to delivery time offers the precious window of opportunity for the
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companies to improve their related technology, market conditions and resource
availability.

Similarly, many companies are willing to introduce new products or services
which can only offer deficits (red figures) at the time of introduction because their
managements believe that eventually their products or services can make profits
(black figures) in the due time. The celebrated product Walkman of Sony Inc. is
a notable example. It was estimated that Sony would lose $35 for each item sold
at the time of first introduction (1979). With changes of parameters, including
technology improvement, market conditions, and resource availability, Walkman
eventually reaps big profit for Sony Inc. (For the details of Walkman transition,
see Ref. 1.)

This research has been motivated by the above observation. For simplicity, the
phenomenon described above will be called “Red in-Black out” phenomenon. We
want to explain such phenomenon by using “programming models in changeable
space”. Especially we will use multi-criteria and multi-constraint level (MC2) sim-
plex method to analyze the phenomenon, and show how we can fine tune our com-
putation so that “Red in-Black out” can indeed become a vital business strategy
in competition. We will formulate the problems into MC2-simplex models depend-
ing on that the parameter changes are caused either by purposeful investment or
by predicted trend of changes. The parameters under consideration includes objec-
tive coefficients that reflect changes of market condition, resources availability that
could be changed by investment or outsourcing, and productivity coefficients that
could be changed by technology and production improvement.

Note that because of changes of relevant parameters, innovative companies are
willing to take risk as to have “Red in-Black out” phenomenon. By adapting and/or
controlling the changes of the parameters, companies can eventually reap hand-
some profit. In terms of habitual domain theory,2,3 this is a proactive attitude
toward changes. The vision of strategic planning is over the entire domains within
which the parameters could changes. The problems can be studied by using MC2-
simplex method, which consider all possible changes of the parameters. We did
not use the formats of sensitivity analysis or parameter variation method such as
those studied by Bradley et al.,4 Wendell,5–7 Hiller and Lieberman,8 and Gal,9

because such formats basically are of local properties, not global or entire space of
changes. They inherit passive, not proactive attitude, and could not study our prob-
lems fully. However, we notice that the format of sensitivity analysis and param-
eter variation could still provide useful information in other setting of decision
making.

This paper is organized in the following order. In Sec. 2, we will briefly sketch
needed notation, format and results of MC2-simplex method to facilitate subse-
quent description. In Sec. 3, we will discuss the parameter changes over the objec-
tive function and resource availability through investment effort. In Sec. 4, we will
explain “Red in-Black out” phenomenon using the trend of parameter changes due
to time advancement. In Sec. 5, we explore the parameter changes due to technology
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or productivity advancement. Further comment and conclusion will be provided
in Sec. 6.

2. Preliminary: MC2-Simplex Method

A typical linear programming model has the following format.

max c1x1 + c2x2 + · · · + cnxn

s.t. a11x1 + a12x2 + · · · + a1nxn ≤ d1,

a21x1 + a22x2 + · · · + a2nxn ≤ d2,

...

am1x1 + am2x2 + · · · + amnxn ≤ dm,

xj ≥ 0, j = 1, 2, . . . , n.

(1)

Let x = [x1x2 · · ·xn]T be the decision vector; c = [c1c2 · · · cn]T, the objective
coefficient vector; A = [aij ](i = 1, . . . , m; j = 1, . . . , n), the resource consumption
(or productivity) matrix; and d = [d1 d2 . . . dm]T, the resource availability vector.

Then problem (1) can be represented by matrix form, as shown in Eq. (2).

max cx

s.t. Ax ≤ d,

x ≥ 0.

(2)

For product mix optimization problem, the element of decision vector x repre-
sents the production unit; the element of vector c, the unit profit for each product;
the element in matrix A, the consumption unit of different resources by different
products; and the element of vector d, the available level for each type of resources.

In multiple-criteria and multiple-constraint level (MC2) simplex method, there
are multiple criteria: C = [c1c2 . . . cq]T is a q × n matrix, where ck, k = 1, . . . , q,
is a n-dimension vector representing the kth criteria; and there are r multiple
constraint levels: D = [d1d2 . . . dr] is a m × r matrix, where dk, k = 1, . . . , r, is
the kth constraint levels for the resources. The MC2-simplex problem thus has the
following format:

max Cx

s.t. Ax ≤ D,

x ≥ 0.

(3)

In MC2-simplex literature10–14, x0 is a potential solution to problem (3) if there
is a pair of weight vectors (λ, σ), λ > 0, σ > 0 such that x0 solves the following
problem:

max λCx

s.t. Ax ≤ Dσ,

x ≥ 0.

(4)
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The simplex tableau of Model (4) can be represented by:

A I Dσ

−λC 0 0

Given a basis B with index set J for the basic variables, let J ′ be the index
set of the corresponding nonbasic variables. The simplex tableau of basis J can be
represented as:

B−1A B−1 B−1Dσ

λCBB−1A − λC λCBB−1 λCBB−1Dσ

where, CB is the submatrix of criteria matrix corresponding to basic variables in
J . Dropping the λ and σ in the simplex tableau, the MC2 simplex tableau of basis
J becomes:

B−1A B−1 B−1D

CBB−1A − C CBB−1 CBB−1D

Set Y (J) = [B−1A, B−1], W (J) = [B−1D], Z(J) = [CBB−1A−C, CBB−1] and
V (J) = [CBB−1D]. The above simplex tableau can be simplified as:

Y (J) W (J)

Z(J) V (J)

Let W (J) and Z(J) be the sub-matrix of MC2 simplex tableau. Define

Γ(J) = {σ > 0|W (J)σ ≥ 0}, (5)

Λ(J) = {λ > 0|λZ(J) ≥ 0}. (6)

The following is well known; see Yu10 or Shi12 for instance. (For extensive discus-
sion of MC2-simplex method relative to fuzzy programming, the reader is referred
to Refs. 15–18).

Theorem 2.1. The basis with index set J is a potential solution if and only if
Λ(J) × Γ(J) �= ∅. That is, J is a potential solution if and only if there exist some
λ > 0 and σ > 0 such that J is the index set of the optimal basic variables for
problem (4).

We can generate all potential bases or solutions together with their parameter
spaces Γ and Λ. An example is provided Sec. 3.

3. Parameter Changes Through Investment on Resources
and Marketing

It is well known that companies can change the marketing condition through invest-
ment in advertisement, service and distribution channels, etc. We shall aggregate
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the impacts on the changes of marketing conditions by the change of the coefficient,
c, of the objective function. Likewise, we aggregate the impact of the investment
effort (such as making alliance, outsourcing, extra resource allocation . . . ) on the
resource availability by the change of d, the level of resource availability.

In order to facilitate the presentation, we will start with a concrete illustration
of a simple example in Sec. 3.1. Then the concepts are then generalized in Sec. 3.2.

3.1. A concrete illustration

Example 3.1. A company produces two types of products, denoted by Type I and
Type II, using two kinds of resources said material resource and human resource.
The available resource levels of material and human resource are 100 and 120 units,
respectively. Unit profits, resource consumption rates and available resource levels
are summarized in Table 1. Note that unit profits of Type I and Type II products
can make −3 and −5 units of profits, respectively. In other words, producing Type
I or/and Type II products will not make profits at current setting. The decision
maker wishes to find the optimal products mix for the company by the mathematical
programming model.

According to Table 1, we can set the linear programming Model (7) as follows:

max −3x1 − 5x2

s.t. 5x1 + 3.5x2 ≤ 100,

2.5x1 + 2x2 ≤ 120,

x1, x2 ≥ 0,

(7)

where x1 and x2 are decision variables representing the production units of Type I
and Type II products, respectively.

The optimal solution for Model (7) is (x1, x2) = (0, 0) and the objective value
of the model is 0. In other words, since no profit can be made, the optimal decision
is not producing any products.

Assume that per unit of investment, the profit rates of Type I and Type II
products can be improved by 0.4 and 0.3 units, respectively, and the available
resource levels of material resource and human resource can be improved by 2.5
and 1 units, respectively, as shown in Table 2.

Table 1. Unit profits, resource consumption rates and available resource
levels in Example 1.

Resource Type I Type II Available Resource Level

Material resource 5 3.5 100
Human resource 2.5 2 120
Unit profits of products −3 −5
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Table 2. Profit rates and resource levels change for each unit of investment.

Available Resource Change Rates for Resource
Resource Type I Type II Level Level by Investment

Material resource 5 3.5 100 2.5
Human resource 2.5 2 120 1
Unit profits of products −3 −5
Change rates for

unit profit in time 0.4 0.3

Let y and z be the investment put into improving the profit rate and resource
availability respectively. Assume there are upper limit constraints: y ≤ 200, z ≤ 300,
and y + z ≤ 400.

With this new information, we can formulate Model (8) to solve the problem.

max (−3x1 − 5x2) + y(0.4x1 + 0.3x2)
s.t. 5x1 + 3.5x2 ≤ 100 + 2.5z,

2.5x1 + 2x2 ≤ 120 + z,

0 ≤ y ≤ 200,

0 ≤ z ≤ 300,

y + z ≤ 400,

x1, x2 ≥ 0.

(8)

Model (8) is a mathematical programming problem. Since, we are more inter-
ested in the impact of the solution changes for the changes of the parameter of y

and z, we formulate Model (8) into Model (9) in matrix form, with extra constraint
(10). The constraints of (10) are assumed to be imposed on the investment in the
market and the resources, including upper limits and the total investment.

max
[
1 y

] [
−3 −5

0.4 0.3

][
x1

x2

]

s.t.

[
5 3.5

2.5 2

][
x1

x2

]
≤

[
100 2.5

120 1

] [
1

z

]
,

[
x1

x2

]
≥ 0.

(9)

0 ≤




y

z

y + z


 ≤




200

300

400


 . (10)

Note that Model (9), excluding (10), is a basic MC2-simplex format. Using
MC2-simplex method, we can locate all potential solutions (or bases) and their
corresponding MC2-simplex tableaus as listed in Table 3.
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Table 3. MC2-simplex tableaus for the potential bases of Model (9).

x1 x2 x3 x4 RHS

Basis of x3 and x4; J = {3, 4}
x3 5.0000 3.5000 1.0000 0.0000 100.0000 2.5000
x4 2.5000 2.0000 0.0000 1.0000 120.0000 1.0000

3.0000 5.0000 0.0000 0.0000 0.0000 0.0000
−0.4000 −0.3000 0.0000 0.0000 0.0000 0.0000

Basis of x1 and x4; J = {1, 4}
x1 1.0000 0.7000 0.2000 0.0000 20.0000 0.5000
x4 0.0000 0.2500 −0.5000 1.0000 70.0000 −0.2500

0.0000 2.9000 −0.6000 0.0000 −60.0000 −1.5000
0.0000 −0.0200 0.0800 0.0000 8.0000 0.2000

Basis of x1 and x2; J = {1, 2}
x1 1.0000 0.0000 1.6000 −2.8000 −176.0000 1.2000
x2 0.0000 1.0000 −2.0000 4.0000 280.0000 −1.0000

0.0000 0.0000 5.2000 −11.6000 −872.0000 1.4000
0.0000 0.0000 0.0400 0.0800 13.6000 0.1800

Basis of x4 and x2; J = {2, 4}
x4 −0.3571 0.0000 −0.5714 1.0000 62.8571 −0.4286
x2 1.4286 1.0000 0.2857 0.0000 28.5714 0.7143

−4.1429 0.0000 −1.4286 0.0000 −142.8571 −3.5714
0.0286 0.0000 0.0857 0.0000 8.5714 0.2143

Basis of x1 and x3; J = {1, 3}
x1 1.0000 0.8000 0.0000 0.4000 48.0000 0.4000
x3 0.0000 −0.5000 1.0000 −2.0000 −140.0000 0.5000

0.0000 2.6000 0.0000 −1.2000 −144.0000 −1.2000
0.0000 0.0200 0.0000 0.1600 19.2000 0.1600

The optimal parameter spaces Γ and Λ for each potential basis can be computed
systematically using Table 3. Note that λ = (1, y) and σ = (1, z). Take the basis of
x3 and x4, i.e. J = {3, 4}, as an example. By solving:

100 + 2.5z ≥ 0, 120 + z ≥ 0, z ≥ 0,

we have the optimal range of z value is: z ≥ 0. Thus, Γ({3, 4}) = {z|z ≥ 0}.
Similarly, by solving:

3 − 0.4y ≥ 0, 5 − 0.3y ≥ 0, y ≥ 0,

we have the optimal range of y is: 0 ≤ y ≤ 7.5. Thus, Λ({3, 4}) = {y|0 ≤ y ≤ 7.5}.
The optimal parameter spaces in terms of y and z for other potential solutions

can be computed similarly. We list the results in Table 4.
Table 4 offers the information of the potential solution structure for Model (9),

including each potential solution/basis J together with its Λ(J)×Γ(J) in terms of
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Table 4. The optimal parameter spaces for the potential solutions of Model (9).

y z

Basis Lower Bound Upper Bound Lower Bound Upper Bound

J = {3, 4} 0 7.5 0 Infinite
J = {1, 4} 7.5 145 0 280
J = {1, 2} 145 Infinite 146.67 280
J = {2, 4} 14.2857 Infinite 0 86.3158
J = {1, 3} 6.6667 15.8621 120 Infinite

y and z. This information can be depicted as in Fig. 1. Note in Fig. 1 by setting
Θ(J) = Λ(J) × Γ(J), we see that J is the optimal basis when (y, z) ∈ Θ(J).

Now, let us consider the investment constraint (10), which can be depicted as
shown in Fig. 2.

Calculating the corner points of the feasible parameter space in Fig. 2, we obtain:

(i) When (y, z) = (200, 0), optimal (x1, x2) = (0, 28.57), and the optimal objective
value is 1571.43.

(ii) When (y, z) = (200, 200), optimal (x1, x2) = (64, 80), and the optimal objec-
tive value is 9328.

(iii) When (y, z) = (100, 300), optimal (x1, x2) = (168, 0), and the optimal objec-
tive value is 6216.

(iv) When (y, z) = (0, 300), optimal (x1, x2) = (0, 0), and the optimal objective
value is 0.

Fig. 1. The potential solution structure of Model (9) when y and z are not limited.
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Fig. 2. The potential solution structure of Model (9) with investment constraints (10).

Figure 2 offers useful information. By varying the constraints on (y, z), the
decision maker can have a full spectrum of decision outcomes, which can lead to
his/her final decision on (y, z) and (x1, x2).

We note that in the original Model (7), the optimal solution is (x1, x2) = (0, 0)
with objective value equal to 0. By the change of the parameter (y, z), the optimal
solution changes with larger objective value. This change and improvement are due
to the change of relevant parameters, which is an important method to expand our
habitual domains as to improve our life. For the details of this method and others
see Refs. 2 and 3.

Let us generalize the above concrete illustration in the following subsection.

3.2. Parameter changes by investment in resources and markets

Assume that objective coefficients, namely, elements of vector c, of Model (1) are
linear functions of the capital investment, which can be represented by Eq. (11).

cj = fcj (y) = cj,0 + cj,1y, j = 1, . . . , n, (11)

where cj,0 is the original profit rate, cj,1 is the increased profit rate for each invest-
ment unit, and y is the investment for increasing unit profit rates.

Assume that the available resource levels, namely, elements of array d, are linear
functions of the capital investment, which can be represented by Eq. (12).

di = fdi(z) = di,0 + di,1z, i = 1, . . . , m, (12)
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where di,0 is the original available resource level, di,1 is the increased unit for each
investment unit, and z is the investment for increasing resource available levels.

By the definition of c and d in Eqs. (11) and (12), Model (1) can be general-
ized as:

max (c1,0 + c1,1y)x1 + · · · + (cj,0 + cj,1y)xj + · · · + (cn,0 + cn,1y)xn

s.t. a11x1 + · · · + a1jxj + · · · + a1nxn ≤ (d1,0 + d1,1z),
...

ai1x1 + · · · + aijxj + · · · + ainxn ≤ (di,0 + di,1z),
...

am1x1 + · · · + amjxj + · · · + amnxn ≤ (dm,0 + dm,1z),

xj ≥ 0, j = 1, 2, . . . , n,

y, z ≥ 0.

(13)

Model (13) in matrix form can be represented as Problem (14).

max λCx

s.t. Ax ≤ Dσ,

x ≥ 0,

λ ≥ 0,

σ ≥ 0,

(14)

where λ = (1, y), σ = (1, z), x = [x1x2 · · ·xn]T is decision vector,
C =

[
c1,0 c2,0 · · · cn,0
c1,1 c2,1 · · · cn,1

]
is the profit rates matrix (including original objective coef-

ficients and the change rates of profit by investment), A = [aij ] (i = 1, . . . , m;

j = 1, . . . , n) is the resource consumption matrix, and D =
[

d1,0 d2,0 · · · dm,0
d1,1 d2,1 · · · dm,1

]T

is
the available resource levels matrix (including original available resource levels and
increased units of resource by each unit of investment).

Model (14) can be solved by MC2-simplex method. The set of all potential
solutions/bases can be obtained systematically as illustrated in Sec. 3.1.

Observe that in Problem (14), there are only two parameters, y and z, that are
subject to change. Useful information provided by Table 4 and Fig. 1 of Example 3.1
can also be constructed for Problem (14).

Suppose that there are constraints imposed on the investment. We can easily
add them to Problem (14), like inequality (10) adding to Problem (9). We shall not
stop to do so.

Note that the constraints on investment offer useful information for final deci-
sion. Nevertheless, the constraints itself can also be subject to change. A bright
decision maker certainly would like to keep this option for better decision.
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4. “Red in-Black Out” Phenomenon-Parameter Changes
in c and d due to Time Advancement

In this section, we will focus on the parameter changes of c and d due to time
advancement. That is, c and d are both functions of time, or c = c(t) and d = d(t).
We shall start with a concrete simple example in Sec. 4.1. Then generalize the
concept in Sec. 4.2.

4.1. An illustrative example

Example 4.1. (Continue on Example 3.1) Assume the original unit profits,
resource consumption rate and available resource levels are same as Table 1 with
linear programming model as Model (7). However, for each unit of time advance-
ment, the unit profit of Type I and Type II products will increase by 0.4 and 0.3
unit respectively; and the resource available level for material and human resource
will increase by 2.5 and 1 unit, respectively. The problem can be summarized as in
Table 5.

The problem can be formulated as in Model (15).

max (−3x1 − 5x2) + t(0.4x1 + 0.3x2)

s.t. 5x1 + 3.5x2 ≤ 100 + 2.5t,

2.5x1 + 2x2 ≤ 120 + t,

x1, x2, t ≥ 0.

(15)

Note that Model (15) has only one parameter, t, while Model (8) of Example 3.1
has two parameters y and z. By setting t at different values, we can obtain the
corresponding optimal solutions and the objective values as summarized in Table 6.

The useful information of Table 6 can be further depicted as shown in Fig. 3.
In Fig. 3, when 0 ≤ t < 7.5, the optimal basis is J = {3, 4} and the optimal

objective value is 0, the decision of not producing any product is made due to
the fact that no profit can be made. When 7.5 ≤ t < 145, the optimal basis is
J = {1, 4} and the optimal objective value increases by time and only Type I
product is produced. When 145 ≤ t < 146.67, the optimal basis is J = {2, 4} and
the optimal objective value increases by time and only Type II product is produced.

Table 5. Example 4.1 in a nut shell.

Available Resource Change Rates for Resource
Resource Type I Type II Level Level by Investment

Material resource 5 3.5 100 2.5
Human resource 2.5 2 120 1
Unit profits of products −3 −5
Change rates for 0.4 0.3

unit profit in time
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Table 6. The optimal solutions and their objective values for different t values for
Problem (15).

t 0 7.5 7.6 50 100 144 146

x1 0 0 23.8 45 70 92 0
x2 0 0 0 0 0 0 132.86

Optimal basis J(3, 4) J(1, 4) J(2, 4)

Objective value 0 0 0.95 765 2590 5023.2 5154.86

t 150 200 250 279 280 300

x1 4 64 124 158 160 168

x2 130 80 30 1 0 0
Optimal basis J(1, 2) J(1, 3)
Objective value 5428 9328 14128 17324.38 17440 19656

Fig. 3. Trends of optimal solutions and objective values at different time interval.

When 146.67 ≤ t < 280, the optimal basis is J = {1, 2} and the optimal objective
value increases in acceleration by time and both Type I and Type II products are
produced. When t ≥ 280, the optimal basis is J = {1, 3} and the optimal objective
value increases in time and only Type I product is produced. Note that in Fig. 3,
the critical times of transition are monotonically, not proportionally, deployed.

Note that the changing pace of time for parameters in the objective function,
i.e. array c, and in the constraints availability, i.e. array d, is the same. Therefore,
the critical time for the changes of optimal bases in Fig. 3 can be calculated by
depicting a line, y = z, in Fig. 1, which is shown in Fig. 4. The intersecting points
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Fig. 4. Intersecting points of the line of y = z with the potential solution structure in parameter
space.

of the line y = z and the range of the different optimal bases are corresponding to
the critical time points shown in Table 6 and Fig. 3.

Finally observe, from Table 6 and Fig. 3, because of that optimization formu-
lation, whenever the optimal objective value is zero, the products should not be
produced due to the fact that each product produced will bring negative profit or
deficit (red in). However, when t ≥ 7.5, Type I product began to be able to bring
in positive profit (black out). If the delivery time is set at some time t > 7.5, then
positive profit can be fulfilled. We shall further discuss this subject in the following
subsection.

4.2. Generalized model for parameter changes in c and d due

to time advancement

With concrete Example 4.1 in mind, assume that c(t) and d(t) are linear. More
specifically, let

cj(t) = cj = cj,0 + cj,2t, j = 1, . . . , n, (16)

where cj,0 is the original profit rate, cj,2 is the increased profit for each unit of time
passed, and

di(t) = di = di,0 + di,2t, i = 1, . . . , m, (17)

where di,0 is the original available resource level, di,2 is change rate of resource
availability over time.
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Introducing Eqs. (16) and (17) into Model (1), we obtain the following change-
able parameter model over c and d due to time advancement.

max (c1,0 + c1,2t)x1 + (c2,0 + c2,2t)x2 + · · · + (cn,0 + cn,2t)xn

s.t. a11x1 + a12x2 + · · · + a1nxn ≤ (d1,0 + d1,2t),

a21x1 + a22x2 + · · · + a2nxn ≤ (d2,0 + d2,2t),
...

am1x1 + am2x2 + · · · + amnxn ≤ (dm,0 + dm,2t),

xj ≥ 0, j = 1, 2, . . . , n,

t ≥ 0.

(18)

Note that Problem (18) has only one parameter t. It can be formulated as

max
[
1 t

] [
c1,0 c2,0 · · · cn,0

c1,2 c2,2 · · · cn,2

]
x

s.t. Ax ≤




d1,0 d1,2

d2,0 d2,2

· · · · · ·
dm,0 dm,2




[
1

t

]
,

xj ≥ 0, j = 1, 2, . . . , n,

t ≥ 0.

(19)

By varying t, for t ≥ 0, one can generate the useful information such as those
of Table 6 and Fig. 3 for final decision.

The phenomenon of “Red in-Black out” can be roughly explained as: at the
ordering time (t = 0), the optimal objective value is less than or equal to 0, and at
the delivery time (t = t1 > 0), the optimal objective value is greater than 0 because
the parameters have been changed over time. The following results can help the
company to figure out if “Red in-Black out” is a good strategic decision or not.

Given j, define I(j) = {i|aij > 0}.
Proposition 4.1. Assume there exist j ∈ {1, . . . , n} such that for all i ∈
I(j), cj,2 > 0 and di,2 > 0. Then, as time advances, Problem (18) will eventu-
ally make profit.

Proof. Set

tj = min
t
{t|cj,0 + tcj,2 ≥ 0 and di,0 + tdi,2 ≥ 0, for all i ∈ I(j)}. (20)

Then, for all i ∈ I(j), when t > tj , cj,0 + tcj,2 > 0 and di,0 + tdi,2 > 0,
the production solution x∗ (with x∗

j = mint{ di,0+tdi,2
aij

} > 0, and x∗
k = 0, for all
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k �= j) will make a positive profit because of cj,0 + tcj,2 > 0, the objective func-
tion, (cj,0 + tcj,2)x∗

j > 0, which is smaller than the optimal objective value of
Problem (18).

Remark 4.1. Suppose there exist j, such that cj,0 > 0 and for all i ∈ I(j),
di,0 > 0. Then according to Eq. (20) of the above proof, the production system will
make profit at time 0.

For a given j and small ε > 0, define

sj(ε) = min
s

{cj,0 + scj,2 ≥ 0 and di,0 + sdi,2 ≥ ε, for all i ∈ I(j), s ≥ 0}.
(21)

Note that sj can be an empty set, or not defined if cj,0 + scj,2 and di,0 + sdi,2,
i ∈ I(j) cannot be greater than 0 at the same time such as those shown in Fig. 5.

Proposition 4.2. (i) Suppose there exist j, such sj(ε) is not an empty set,
then sj(ε) is the time point at which the Problem (18) will not yield loss.
Furthermore, if cj,0 + sj(ε)cj,2 > 0, then sj(ε) is a time point at which the
Problem (18) will yield profit.

(ii) For all j such that cj,0 < 0, let s∗(ε) = minj{sj(ε)}. Then for time t > s∗(ε),
the system of (18) can make profit.

Proof. For (i). It can be proved similar to that of Proposition 4.1.
For (ii). Suppose s∗(ε) = sk(ε). As ck,0 < 0, ck,0 + sk(ε)ck,2 ≥ 0, ck,0 + tck,2 > 0

for t > sk(ε). Therefore, the system can make a profit when t > sk(ε) = s∗(ε).

Assume the production system will make profit eventually, which can be checked
by above Propositions 4.1 and 4.2, and that the optimal objective function value
v(t) is increasing with time with v(t = 0) ≤ 0. Let t0 be the earliest critical time
of making profit in the sense that when t > t0 the system can make profit with
v(t) > 0; and when t < t0 the system will not make profit with v(t) ≤ 0. The
following algorithm, exemplified by the flow chart of Fig. 6, can be of help to
find t0.

Fig. 5. Two situations for sj to be an empty set.
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Fig. 6. Flow chart of Algorithm 4.1.

Algorithm 4.1.

Step 1. Choose tL > 0, where tL denotes left end point, and set tR = tL, where
tR denotes right end point.

Step 2. Solve Model (18) with t = tL to obtain the optimal objective value, v(tL).
Step 3. If v(tL) ≤ 0, go to Step 3.1–3.3. Otherwise, go to Step 4.

Step 3.1. Set tL = tR, tR = 2tR.
Step 3.2. Solve Model (18) with t = tR to obtain the optimal objective

value, v(tR).
Step 3.3. If v(tR) > 0, go to Step 5. Otherwise, back to Step 3.1.

Step 4. If v(tL) > 0, go to Steps 4.1–4.3.

Step 4.1. Set tR = tL, tL = tL/2.
Step 4.2. Solve Model (18) with t = tL to obtain the optimal objective

value, v(tL).
Step 4.3. If v(tL) ≤ 0, go to Step 5. Otherwise, back to Step 4.1.
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Step 5. Set tM = (tL + tR)/2, where tM denotes the middle point of the interval
[tL, tR].

Step 6. Solve Model (18) with t = tM to find the optimal objective value, v(tM ).

Step 6.1. If v(tM ) > 0, set tR = tM and back to Step 5.
Step 6.2. If v(tM ) < 0, set tL = tM and back to Step 5.
Step 6.3. If v(tM ) = 0 and v(tL) = 0, set tL = tM and back to Step 5; if

v(tM ) = 0 and v(tL) < 0, then the time point tM is the earliest
critical time of making profit for the system.

Theorem 4.1. If system (18) will make profit eventually and the objective func-
tion value will increase by time, Algorithm 4.1 will converge.

Proof. The proof of this theorem is similar to that of bisection method. For details,
see Ref. 19.

5. Generalized Model for Parameter Changes Including
Elements of A

It is well known that parameter changes in elements of A usually involve nonlinear
computation for optimization. However, when the changes follow some specific pat-
tern, the mathematical programming can be reduced to a form of linear inequalities
with multi-level resource availability constraints.

Again, we will start with a concrete simple example in Sec. 5.1. The generalized
model for parameter changes including elements of A and its relation to “Red in-
Black out” phenomenon will be given in Sec. 5.2. Further generalization will be
given in Sec. 5.3.

5.1. An illustrative example

Example 5.1. (Continue on Example 4.1) Assume that the consumption of
resources, perhaps due to technological advancement, is reduced at a rate (1 +
0.025t)−1 and (1 + 0.00833t)−1, respectively for material and human resource and
the resource availability remains the same. Table 7 offers a summary of the problem.

Table 7. A summary of the problem of Example 5.1.

Available Resource Change Rates for Resource
Resource Type I Type II Level Level by Investment

Material resource 5 3.5 100 (1 + 0.025t)−1

Human resource 2.5 2 120 (1 + 0.00833t)−1

Unit profits of products −3 −5
Change rates for 0.4 0.3

unit profit in time
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Note that the objective function is the same as in Problem (15). The constraints
of the problem can be rewritten as:[

5 ∗ (1 + 0.025t)−1 3.5 ∗ (1 + 0.025t)−1

2.5 ∗ (1 + 0.00833t)−1 2 ∗ (1 + 0.00833t)−1

][
x1

x2

]
≤

[
100

120

]
(22)

or

5x1 + 3.5x2 ≤ 100 ∗ (1 + 0.025t) = 100 + 2.5t

2.5x1 + 2x2 ≤ 120 ∗ (1 + 0.00833t) = 120 + t

which reduces to [
5 3.5

2.5 2

] [
x1

x2

]
≤

[
100 2.5
120 1

] [
1

t

]
. (23)

Note the constraint (23) is identical to that of Problem (15). Therefore, all the
discussion and computation for useful information of Problem (15) can be carried
over to this new problem. We shall not repeat it. Being limited by space, we pur-
posefully choose the change rates for resource usage in time so that we do not have
to repeat the computation. Of course, the model can be applied to different rate of
change in resource usage.

5.2. A generalization, including changes in elements of A

Assume that elements of c, d, and A can be changed over time and they are all
linear functions of time. Specifically,

(i) the objective coefficients, c, can be represented by Eq. (24).

cj = cj,0 + cj,2t, j = 1, . . . , n, (24)

where cj,0 is the original profit rate, cj,2 is the increased profit for each unit of
time, and t represents the time units.

(ii) the elements of matrix A, will be changed over time and can be represented
by Eq. (25).

aij =
aij,0

1 + aij,1t
, i = 1, . . . , m, j = 1, . . . , n, (25)

where aij,0 is the original consumption rate for different product j in resource i;
aij,1 is the change rate for each unit of time for different product j in resource i.
(Note that if for each i, aij,1 is the same for all j, then the constraints reduces
to a similar form of Eq. (23).)

(iii) the resource available level, namely, elements of d, can be represented by
Eq. (26).

di = di,0 + di,2t, i = 1, . . . , m, (26)

where di,0 is the original available resource level and di,2 is change rate of
available resource over time.
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Introducing Eqs. (24)–(26) into Model (1), we obtain the following changeable
parameter model due to time advancement shown in Model (27).

max (c1,0 + c1,2t)x1 + (c2,0 + c2,2t)x2 + · · · + (cn,0 + cn,2t)xn

s.t. [a11,0/(1 + a11,1t)]x1 + · · · + [a1n,0/(1 + a1n,1t)]xn ≤ (d1,0 + d1,2t),

[a21,0/(1 + a21,1t)]x1 + · · · + [a2n,0/(1 + a2n,1t)]xn ≤ (d2,0 + d2,2t),
...

[am1,0/(1 + am1,1t)]x1 + · · · + [amn,0/(1 + amn,1t)]xn ≤ (dm,0 + dm,2t),

xj ≥ 0, j = 1, 2, . . . , n,

t ≥ 0.

(27)

Similar to Propositions 4.1–4.2, Algorithm 4.1, and Theorem 4.1, we can restate
their general cases as follows. Recall that I(j) = {i|aij > 0}.
Proposition 5.1. Assume there exist j ∈ {1, . . . , n} such that for all i ∈
I(j), cj,2 > 0 and di,2 > 0. Then, as time advances, Problem (27) will eventu-
ally make profit.

Recall that sj(ε) = mins{cj,0 + scj,2 ≥ 0 and di,0 + sdi,2 ≥ ε, for all i ∈ I(j),
s ≥ 0}, as defined in (21).

Proposition 5.2. (i) Suppose there exist j, such sj(ε) is not an empty set,
then sj(ε) is the time point at which the Problem (27) will not yield loss.
Furthermore, if cj,0 + sj(ε)cj,2 > 0, then sj(ε) is a time point at which the
Problem (27) will yield profit.

(ii) For all j such that cj,0 < 0, let s∗(ε) = minj{sj(ε)}. Then for time t > s∗(ε),
the system of (27) can make profit.

Algorithm 5.1.

Step 1. Choose tL > 0, where tL denotes left end point, and set tR=tL, where tR
denotes right end point.

Step 2. Solve Model (27) with t = tL to obtain the optimal objective value, v(tL).
Step 3. If v(tL) ≤ 0, go to Steps 3.1–3.3. Otherwise, go to Step 4.

Step 3.1. Set tL = tR, tR = 2tR.
Step 3.2. Solve Model (27) with t = tR to obtain the optimal objective

value, v(tR).
Step 3.3. If v(tR) > 0, go to Step 5. Otherwise, back to Step 3.1.

Step 4. If v(tL) > 0, go to Steps 4.1–4.3.

Step 4.1. Set tR = tL, tL = tL/2.
Step 4.2. Solve Model (27) with t = tL to obtain the optimal objective

value, v(tL).
Step 4.3. If v(tL) ≤ 0, go to Step 5. Otherwise, back to Step 4.1.
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Step 5. Set tM = (tL + tR)/2, where tM denotes the middle point of the interval
[tL, tR].

Step 6. Solve Model (27) with t = tM to find the optimal objective value, v(tM ).

Step 6.1. If v(tM ) > 0, set tR = tM and back to Step 5.
Step 6.2. If v(tM ) < 0, set tL = tM and back to Step 5.
Step 6.3. If v(tM ) = 0 and v(tL) = 0, set tL = tM and back to Step 5; if

v(tM ) = 0 and v(tL) < 0, then the time point tM is the earliest
critical time of making profit for the system.

Theorem 5.1. If the production system will make profit eventually and the objec-
tive function value is increasing with time, Algorithm 5.1 will converge.

5.3. Further generalization with parameters as control variables

Let k is the investment units for changing the efficiency of resource usage. Model
(13) of Sec. 3.2 can be further expanded as follows.

Let

aij = faij (k) =
aij,0

1 + aij,1k
, i = 1, . . . , m; j = 1, . . . , n, (28)

where aij,0 is the original consumption rate for different product j in resource i; aij,1

is the change rate for each unit of investment for different product j in resource i.
Introducing Eq. (28) into Model (13), we obtain the following model with param-

eters as control variables.

max (c1,0 + c1,1y)x1 + (c2,0 + c2,1y)x2 + · · · + (cn,0 + cn,1y)xn

s.t. [a11,0/(1 + a11,1k)]x1 + · · · + [a1n,0/(1 + a1n,1k)]xn ≤ (d1,0 + d1,1z),

[a21,0/(1 + a21,1k)]x1 + · · · + [a2n,0/(1 + a2n,1k)]xn ≤ (d2,0 + d2,1z),
...

[am1,0/(1 + am1,1k)]x1 + · · · + [amn,0/(1 + amn,1k)]xn ≤ (dm,0 + dm,1z),

y ≤ yM ,

z ≤ zM ,

k ≤ kM ,

y + z + k ≤ IM ,

xj ≥ 0, j = 1, 2, . . . , n,

y, z, k ≥ 0.

(29)

Note that the above formulation, y, z and k are changeable parameters as well
as control variables. When there are other constraints imposing on y, z, k, they can
be easily added on. The Problem (29) is usually nonlinear. As demonstrated before
(Secs. 5.1 and 5.2), with special structure, it can be reduced to MC2-simplex format,
and can be solved systematically. We shall not repeat it.
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6. Conclusions

Motivated by the “Red in-Black out” phenomenon (taking loss at the ordering
time and making profit at the time of delivery), we study linear programming
models with changeable parameters using multi-criteria and multi-constraint level
linear programming (MC2LP) models. We have provided formulations, computa-
tion methods and analysis as to gain useful insight into the “Red in-Black out”
phenomenon. We have also proposed an algorithm to locate the first critical time of
making profit for a given system, which is an important information to those deci-
sion makers who consider adopting the “Red in-Black out” as a business strategy.
At the end, we also sketch a generalized mathematical programming model with
changeable parameters and control variables to study more general cases.

Many research problems are open. For instances, how to interpret the meaning
of the dual problem of the proposed model? How to deal with the uncertainty and
fuzziness of parameter changes due to investment or time advancement? We invite
interested readers to explore these interesting and meaningful problems.
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